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Scheme I is a formalism for rationalizing the nmr 
results; the intermediate ion 8 may, however, better be 
represented by structure 9 or 10.14 

^ io 
9 

We call attention to the complementary relationship 
between our results and those observed several years 
ago on the 7-norbornadienyl cation (H).15 There a 

11 12 ii' 

stepwise circumambulatory motion of five carbons 
(1, 6, 5, 4, 7) with respect to the two "bound" vinyl car­
bons (2, 3) was rationalized via the [3.2.0] allylic ion 12. 
Ion 12 was not observed at —78° in the nmr spectrum, 
the only detectable ion being 11. When the ring sys­
tem is expanded by one carbon atom, as we report here, 
the converse obtains; only the allylic ion (i.e., 5) can 
be observed by nmr; the intermediate ion (8-10) goes 
undetected. This inversion in the relative stabilities 
of the ions is reasonable since the cationic site is now 
"off-center" with respect to the stabilizing double bond 
(see 10). 

The mechanism by which 5 is formed from 4 is being 
investigated. 
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A Stereoselective Synthesis of 
D-e^/Aro-Sphingosine 

Sir: 

We would like to report a short, highly stereoselective 
synthesis of D-ery/^o-sphingosine (1) (1,3-dihydroxy-

HOCH2CH—CHCH=CH(CH,)12CH3 

NH2 OH 
1 

2-aminooctadec-2-/rans-ene), the most widely occurring 
of the sphingolipid bases.l The attractive features of 
this novel synthesis, not shared in combination by those 
previously reported,2 are its brevity, the direct forma-

(1) For recent reviews, see: (a) K. A. Karlsson, Lipids, 5, 878 
(1970); (b) J. Kiss, Advan. Carbohyd. Chem. Biochem., 24, 381 (1969); 
(c) P. Morell and P. Braun, J. Lipid Res., 13,293 (1972). 

tion of a chiral product with predominantly the correct 
stereochemistry, and its potential for ready adaptation 
to the synthesis of other homologs, ceramides, cerebro-
sides, and more complex sphingolipids. 

The synthesis involves the simple conversion of the 
commercially available L-serine whose chiral center 
corresponds to that of sphingosine (I)3 to the L-alde-
hyde 27 by N-phthaloylation, O-acetylation, acid chlo­
ride formation, and catalytic hydrogenation as indi­
cated in Scheme I. 
Scheme I 
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Addition (ca. 15 min) of 6.6 g of the chiral aldehyde 
V in 30 ml of benzene-ether (2:1) to 0.024 mol of trans-
pentadecenyldiisobutylalane in hexane (40 ml)8 at 5-
10° and allowing an additional hour for warming to 
room temperature furnished directly D-erythro-O-
acetyl-A^-phthaloylsphingosine (3)9 (1.5 g) obtained as 
an oil, [a]D +3.3° (c 0.37, EtOH),10 along with the un­
natural threo isomer 4 (0.4 g), mp 55-63 ° . n The 

(2) The various chemical approaches to the synthesis of the sphingo­
lipid bases reported to date have been recently reviewed: D. Schapiro, 
"Chemistry of Sphingolipids," Hermann, Paris, 1969. 

(3) R. M. Burton, M. A. Sodd, and R. O. Brady, / . Biol. Chem., 233, 
1053(1958). 

(4) J. C. Sheehan, M. Goodman, and G. P. Hess, / . Amer. Chem. Soc, 
78,1367(1956). 

(5) The conditions used are a modification of those described by W. 
Foye and W. E. Lange, / . Amer. Pharm. Ass. Sci. Ed., 45,742 (1956). 

(6) The optical rotation of triacetyl-D-e/wfAro-sphingosine prepared 
from 1 obtained below ([a]D - 10.6° (c 0.3, CHCU)) is in essential agree­
ment with the literature value (Beilstein III, 4, 855) indicating 
that the hydrogenation of the acid chloride to produce 2 proceeded 
without racemization. By contrast, H. Seki, et al. (Chem. Pharm. Bull., 
20, 361 (1972)), report that extensive racemization occurred during the 
catalytic hydrogenation of alkoxyformic anhydrides of Af-acetylamino 
acids. 

(7) Obtained as a colorless oil. A comparison of intensity ratios of 
the aldehydic proton and the phthaloyl and -CHaCH- protons indi­
cated the crude product to contain ca. 50 % of the desired aldehyde. 

(8) H. Newman, Tetrahedron Lett., 4571 (1971). 
(9) The apparent change in configuration of C-2 from L in the serine 

derivatives to D in sphingosine and its derivatives is actually the result 
of a change in reference origin. In the former series, as with all amino 
acids, the molecule is, according to convention, oriented in two dimen­
sions with its carboxyl group up. This puts the amino group having 
the L optical configuration on the left. In the latter series, the terminal 
OH is oriented upward. This now places the same amino function 
on the right, therefore, the D optical configuration. 

(10) Satisfactory analytical data were obtained for this compound. 
(11) After further thick-layer chromatographic purification (2-mm 

silica gel; CjHn-EtOAc, 9:1) of the product isolated from the parti­
tion chromatogram. Since Re tic of this product still showed slight 
contamination with a slightly faster running impurity, its optical rota­
tion was not measured. Unequivocal characterization of 4 was ac­
complished by converting it exclusively to the known N-acetyl-D-
<Areo-sphinganine (E. F. Jenny and C. A. Grob, HeIv. CMm. Acta, 36, 
1454 (1953)) by catalytic hydrogenation, followed by blocking group 
removal as described in the main discussion and then N-acetylation 
(by the method of R. C. Gaver and C. C. Sweeley, / . Amer. Chem. Soc, 
88,3643(1966)). 
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;AI 
2 + ^C=CC 

H V(CH2)12CH3 

AcOCH,CHCHCH=CH(CH2)12CH3 + D-tfcreo isomer 

I I 4 
NPhthOH 

3 

isomers were readily separated by partition chromatog­
raphy.12 

This reaction is a further example of our recently 
reported method8 for the preparation of trans allylic 
alcohols stereospecifically from the reaction of alde­
hydes and ketones and vinylalanes. 

Removal of the blocking groups from 3 was accom­
plished (96% yield) preferentially int wo stages,13 viz. 
methanolysis in the presence of a trace of acid to re­
move the acetoxy substituent followed by hydrazinolysis 
to remove the phthaloyl group to give v-erythro-
sphingosine(l).6'14 

1. MeOH-Hf 

2.NHjNH2-EtOH 

The aldehyde 2 showed a sharp singlet in its nmr 
spectrum at 5 9.68 due to the aldehyde proton, sug­
gesting conformation A for this aldehyde, in which the 

AcOCE 

dihedral angle between the aldehydic proton and the 
one on the a carbon would be ca. 90° and as a result 
show a minimum spin-spin coupling.16 Preferential 
attack of this conformation by the organometallic from 

(12) Celite 545 and heptane-methyl Cellosolve were the support and 
developing solvent system used, respectively. A third product, D-
eryfAro-l-acetoxy-2-phthalimido-3-hydroxyoctadec-4-yne (i) (0,4 g), 
was also isolated. The order of elution from the column was first 
4, and then 3, and finally i. All came off between 7 and 11 holdback 
volumes. The Ri values of these compounds were ca. 0.4 on tic (silica 
gel; CeHsH-EtOAc, 9:1). (No threo-i was present. This compound 
was obtained in connection with another synthetic approach to sphingo-
sine which we investigated (unpublished results) and would have been 
detected.) The formation of i is presumably the result of the reaction of 
some CHa(CHs)2C=C—AK (ii) present (formed from pentadecyne 
and diisobutylaluminum hydride in an acid-base reaction) and 2. The 
fact that only erythro-i formed suggests that the reaction between ii and 
2 proceeds stereospecifically. This could, not unreasonably, be at­
tributed to the decreased reactivity of ii compared to its vinylalane 
analog which results in a still greater selectivity in its reaction with 2 
via conformation A (see further on in the discussion above). 

(13) Direct hydrazinolysis gave a less pure product. We speculate 
on the basis of its infrared spectrum which showed absorption in the 
carbonyl region consistent with the presence of N-Ac that direct hy­
drazinolysis is complicated by O - • N acyl transfer which follows the 
preferential hydrazinolysis of the phthaloyl moiety. 

(14) Obtained as a yellow waxy solid; .Rf on tic (silica gel, CHCh-
MeOH-2 W NH1OH, 40:10:1'6) -0 .57 . Unequivocal characteriza­
tion was effected by conversion to the known 0,0,Ar-triacetyl-D-er>,Mro-
sphingosine (BeilsteinIH, 4, 855) in 92% yield. 

(15) P. B. Mendershausen and C. C. Sweeley, Biochemistry, 8, 2633 
(1969). 

(16) N. S. Bhacca and D. H. Williams, "Applications of NMR Spec­
troscopy in Organic Chemistry," Holden-Day, San Francisco, Calif., 
1964, p 49. 

the least-hindered topside as indicated by the arrow 
would give predominantly the erythro isomer 3 . " 
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Naphtho[6]cycIopropene 

Sir: 

Although the highly strained but isolable benzocyclo-
propene (1) has been synthesized by two routes,L parent 
members of other aromatic systems incorporating 
linearly fused cyclopropenes are unknown.2 We now 
report the synthesis of naphtho[6]cyclopropene (2), a 
compound expected to show a high degree of bond 
fixation. 

1 2 

Treatment of 33 with an eightfold excess of KO-J-Bu 
in dry THF for 18 hr gives 2 (38% yield) and its sol-
volysis product 4, eq 1. Purification of 2, mp 86-87°, 

OCxs KO-t-Bu 
THP 2 + -CH2Ot-Bu 

(D 

was accomplished by adsorption chromatography using 
Florisil (100-200 mesh) and pentane eluent followed by 
sublimation. 

The structural assignment of 2 was based on its spec­
tral and chemical properties: uv°'a°

u 221 nm (e 
58,000); i r ^ 1673 (aromatic double bond) and 843, 
745 cm - 1 (aromatic); mol wt (mass spectrum) 140 
(base peak). The nmr spectrum is displayed in Figure 
1. The significant feature of this spectrum is the singlet 
at 5 7.40 assigned to the two central ring protons. 
Since these protons reside among the remaining four 

(1) E. Vogel, W. Grimime, and S. Korte, Tetrahedron Lett., 3625 
(1965); W. E. Billups, A. J. Blakeney, and W. Y. Chow, Chem. Commun., 
1461 (1971). 

(2) The synthesis of 1,1 -dichloro-2,7-diphenylnaphtho[6]cyclopropene 
in low yield has just been reported; see A. R. Browne and B. Halton, 
J. Chem. Soc, Chem. Commun., 1341 (1972). A compound originally 
believed to be a keto tautomer of naphtho[6]cyclopropenediol was 
later shown not to contain a three-membered ring: L. F. Fieser and 
M. A. Peters, J. Amer. Chem. Soc, 53, 4080 (1931); A. R. Bader and 
M. G. Ettlinger, ibid., 75, 730 (1953). For interesting synthetic ap­
proaches to the naphtho[6]cyclopropene system, see M. P. Cava and 
K. Narasimhan, J. Org. Chem., 36, 1419 (1971); K. Geibel and J. 
Heindl, Tetrahedron Lett., 2133 (1970). 

(3) Addition of dichlorocarbene (KO-J-Bu, CHCl8, 5°) to 1,4-di-
hydronaphthalene4 gives 3, mp 49-51 °, in 27% yield: nmr S 1.97 (m, 
2 H), 2.49-3.45 (m, 4 H), and 7.02 (s, 4 H). 

(4) E. S. Cook and A. J. Hill, / . Amer. Chem. Soc, 62,1995 (1940), 
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